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ABSTRACT

Many systems and systems-of-systems function in sequential-stage
fashion, and are constantly on when operative, but are failure-
susceptible. Communication systems, power generation and
transmission, and vehicular transportation systems tend to fall into this
category. We propose a reliability growth model for such systems that
is based on design defect removal under a Test-Fix-Test (TFT)
protocol: a system is assembled and put under test, for example for a
fixed mission time, or multiple thereof. If the system fails during the
test time its failure source in some stage is diagnosed, the stage is re-
designed, and the new prototype system reassembled (system design is
"fixed") and the system is re-tested. The test (TFT) process is repeated
until a pre-determined test period elapses with no failures. This is
analogous to the run-test criteria analyzed for one-shot devices [1]. In
this model we also allow for occasional defective re-design: response
to a test failure can actually (and realistically) increase the number the
number of failure-generating design defects.

Our model allows quick numerical understanding of TFT operating
characteristics, given defining parameter values. It thus provides a
planning tool for test designers.



1. Introduction and Model Formulation

Mathematical models are formulated for the reliability evolution (desirably

growth [2], [3], [4], [5], but also occasional realistic decay) of a continuously

operating ("always on") system that is tested, fixed (partially re-designed) if it fails,

re-tested, etc, until a specified stopping condition is achieved. The stopping rule

utilized here is analogous to a run test [1], [6]; here the entire system must survive

without any failure for a time r in order to pass the test, have its design frozen, and be

eligible for operational testing and eventual usage in the field.

Two test measures of effectiveness (MOEs) are analytically evaluated:

(a) the probability that the system survives in the field, i.e., after the

end-to-end testing period of specified duration r is survived without failure,

and the design is frozen; and

(b) the expected duration of such a test.

It is also possible to analytically evaluate other such measures by our backward

equation technique: the variance of test duration, the probability distribution of

remaining design defects or faults, and so forth. All of these measures are evaluated

in terms of basic parameters, such as the initial number of design-fault-susceptible

modules per stage (di for stage i) the maximum number per stage (mi), the rate of

design fault activation, hence failure per design fault module (2i), the number of

sequential stages (S), the duration of the fault-free test interval that must be survived

in order to pass the test (r) (specified in advance by the planner/analyst), the

probability of effective re-design/fault removal (pi), and the probability of ineffective

re-design/fault addition (ai). In the present model study the analyst must furnish

values for these basic "what if' parameters, and the model then evaluates the MOEs
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(a) and (b). The model is also extended to account for test-to-test environmental

variability both random and systematic.

Our model can also form the basis for statistical inference concerning stage-wise

fault population parameters. Given observations on failures at various stages, a

likelihood function can be written down and analyzed, possibly making use of

Bayesian methodology. This will be a topic for future research.

2. Generic Situation: Staged Systems in Continuous Time Under

Test-Fix-Test

Consider a system, 5, that is made up of S stages, $i, S-, ... , 5j, ... , 5s, the ith,

(i=l, ... S), of which has a maximum number of modules, mi, all of which must

operate for the ith stage 5i to be operative. However, stage i initially has

di, (1 <di d< mi), design defects, i.e., improperly designed failure prone modules.

These are presumed to activate independently and randomly as exposure (test, or field

operation) time elapses. Initially we presume the time to (activation/failure) of each

design defect in stage i to be exponentially distributed, with rate Xi. The mi -di

modules without defects at 5i are assumed (for now) not to be failure-susceptible.

It is here assumed that if the system 5 is put on test at t=O it operates successfully

until the first design-defective module in any stage activates/fails; when that module

fails, 5 fails (no redundancy). Occurrence of such activation is an opportunity for

re-design (permanent or temporary repair) of the failed module. If this step is (i)

positively effective the module is no longer activation/failure-prone, i.e., di is

decreased by one; if this step is (ii) negatively effective, the re-design is not only

ineffective, it adds a defective module, so the net number of defects is increased by
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one; otherwise the re-design is (iii) ineffective, meaning that there is no change in the

number of defective modules. Note that the above defect-removal/re-design option is

only available at the testing (developmental, early operational) stage.

2.1 Test Protocol

We analyze properties of a no-mission time failure test protocol: specify a test

time, T, and test the system for that time. Each such test event is called a subtest. If a

failure occurs during that subtest, perform re-design and test again, continuing until

the system survives for time T without failure. At this moment the test is complete

and the design is frozen. This is clearly analogous for the run of r criteria

analyzed [1].

There are two simple versions of this protocol.

(A) The subtests all last for the basic test time r, even if a failure occurs during

a subtest and the subtest has failed at that point. For the present we

consider just one failure to be possible during a subtest. Generalizations

will be furnished later.

(B) The subtests each last until the time to first failure or time r, whichever

occurs first.

This requires that the system be constantly monitored in real time to discover

failure occurrence; if this is feasible it is undoubtedly more time efficient. But

operational circumstances may compel the use of (A). It is the version we

analyze first.
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3. Test Protocol Modeling and Measures of Test Effeciveness Under

Protocol (A)

The system model and test protocol yield expressions that allow numerical

evaluation of measures of system test-fix, etc, effectiveness.

3.1 Probability of Fielded (Design-Frozen) Success

Let p,(dj,..., di,..., ds) = Probability that the tested and accepted (design-frozen)

system survives without failure for time TF.

Then by probability arguments that proceed from the first subtest (backward

equation approach) we obtain ls S
= 1Adir eY~idiTFpr(dl,...,di,...,ds) = e , e , +

probability no probability no
failures, so no field failures
re-designs(~I-

Y ie Aiidij±s A.,2 dk*s pi(di)p,(dl,...,di-1,,ds)+
~A ,kdk L defect in module i removed

k=l

* ,ai(di)p,(dl,...,di + 1,,ds + (3.1)
new defect introduced by "redesign"

*(1 - pi (di) - ai(di))pr (dl,..., di,...,d.,)]

no change in number of defects

where AiF is the failure rate in the field of a remaining design defect in stage i.

The conditional probability of defect removal (,a) and addition (ai) are

assumed to be

po(d 1)=p, for 1<d, <m, (3.2,a)

= 0 otherwise
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a.(d)=aj for l<d•m -1l (3.2,b)

= 0 otherwise

In the present model d, < mi for all stages, where mi is the specified maximum

number of defects in stage i. The above expression may be recursively solved,

starting with p,(0, 0,... 0) = 1; (3.2,b) prevents the number of defects from exceeding

mi in stage i.

3.2 Expected Test Duration, Protocol (A) (Each Subtest Requires Time r)

Let w,(djd 21...,dz,...,d,)= Expected/mean time to complete a test that

terminates with system first failure-free survival of time r.

Then again by arguing from the first subtest

w,(d 1,d 2,..., di,.. ,as)= d +YAi drs
S 2kdk (3.3)
k=1

"+ ai(di)w,(dl,....,di +lI,...d) +

"+ (1 - p,(d1 ) - ai(di))wr(di,...,d1,...,ds)]

Here the initial/boundary condition is w,(0,...,0,...0) = r-.

3.3 Generalization for Between-Test Variability

It is possible to explicitly account for an additional likely source of variability:

subtest environmental variation, represented by a sequence of positive independent

identically distributed random variables, {O,; t = 1, 2, ...} where t denotes the subtest

number. Illustrate by generalizing (4.1). Conditional on the values 0, t 2, and

deconditioning subtest by subtest,
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p,.(dj, d2,..., ds) = E[p, (d,,..., ds, 0w.,,,...)]=

+ a e-(di)P (d1 ,...,d, + l,...,ds) +

"+ (I- p,(d,)- c-,(di)p,(d,,...,di,...,ds)]

4. Test Protocol Modeling Under Protocol (B) (Each Subtest Requires

the Time to Failure or T, Whichever Occurs First)

In this protocol it is possible to correctly detect a failure in Stage i when it

occurs, without waiting until the end of the test.

4.1 Probability of Fielded (Design Frozen) Success

If p,(dj,d 2... , di,...ds) is defined as in Section 4.1, then the backward equation

for this function is the same as in (4.1). Furthermore, the expression (4.4) that

incorporates independent between-test variability holds for this situation also.

4.2 Expected Test Duration, Protocol (B)

Define w, (d,, d2..., di,... ds) to be the mean time to test termination (after the

system survives time r). Then in this situation the backward equation becomes

S

Wr(di,d 2... , di,...ds)=re, +
S

S _IA-"idiX+ Zfo' e A" d4dx~x + p,(d,)wjd,,...,d, -1,...,s) +
* a,( di) w, (d,,...di + l.,ds) +

+ (1 - pi(d) - ai,(d,))w,(d,,..., di,..., ds)].
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This simplifies to

I -'Ii dr
w,(dpd2 .... d,... ds) = 1 -e e +

Y, Aidi

i=1

+ 1-e "21•S•di [pi(di )wr(d1  -1..d-,'ds) + (5.1)

ki=1 2kdk

"+ aj(di)w,(d,...,d, + 1,...,d ) +

"+ (1- pi(di) - ai(di))w,(dj_.. di,..., ds)].

To generalize (5.1) to account for between-test variability it is only necessary to

- i 1dir e i.1

replace the first term 11-e " ,by E s and, in the secondA ,d, OY A O , i di

s s "1
-ZY-idir -Aidir 9

term, e -' by E e JJ, where the expectation is on 0.

Any distribution having positive support and with an explicit Laplace-Stieltjes

transform provides tractable closed form models for Protocol (A). To obtain a

closed-form expression for Protocol (B) it must be possible to integrate the Laplace

S
transform of 0 from zero to a finite limits 2 idi r.

i=1

5. Illustrative Numerical Example

The backward equations may be solved iteratively to provide numerical insights

into system performance under the TFT testing protocol. Here is a brief, isolated, but

suggestive example.
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5.1 A Test-Stage Situation

The parameters used are the following:

A1 = 0.01, 22 = 0.05 (Test defect activation rate (hours)-1)

PA = P2 = 0.75 (Defect rectification/correction probability)

a, = 0.20, a 2 = 0.10 (Defect mis-identification/addition of one defect probability)

mi = m2 = 4 (Maximum number of defects in each stage)

rF = 100 (Thefield mission time (hours))

"I1F = 0.05,2F 0.05 (Field defect activation rate (hours)-')

(A) Examine the effect of the basic sub-test time, r, on the probability of

surviving a field operation without failure. The numbers in the small table below

indicate the surprisingly systematic effect of test duration on probability of successful

field operation.

Table 1: Probability of Surviving TF (Field Operation)

Initial Defects (di) Test Time (r)
di d2  50 100 200 300

0.89 0.99 1.00 1.00
0 1 (119) (252) (508) (761)

[70] [127] [229] [329]
0.25 0.52 0.83 0.94

2 2 (276) (651) (1462) (2264)
[106] [204] [375] [510]
0.29 0.55 0.84 0.94

2 4 (426) (945) (2035) (3119)
[120] [215] [380] [513]
0.16 0.45 0.81 0.93

4 4 (519) (1201) (2625) (4021)
1 [139] [261] [453] [593]

( )=Expected Test Time, Protocol (A)
] ]=Expected Test Time, Protocol (B)

However, the required number of tests tends to increase substantially particularly

under Protocol (A). If the test can be stopped as soon as a failure occurs, considerable

time can be saved. The moral is that only by considerable testing and fixing (in an
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error-prone "fix" environment) can we eventually hope to have a highly reliable

(small, two-stage) system.

Software that can be activated to exercise programs to evaluate various situations

(and parameter variations) appears at http://www.nps.navy.mil/o-pnsrsch/testeval/.
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